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Abstract: Lifetime distributions are mostly Weibull, exponential, gamma
and lognormal, and these observations may be correlated. For lifetime
improvement experiments, optimal settings of the operating conditions are
identified using D-optimal, or rotatable designs. Therefore, for correlated
lifetime observations with different distributions, locating the optimal
operating settings is the primary requirement to the quality engineers. The
current report derives some efficient rotatable designs for autocorrelated
and a particular form of compound symmetry correlated error structures for
the above mentioned four lifetime distributions. Note that the derived designs
depend on the concerned correlated error structure but free of correlation
coefficient values and the lifetime distributions..
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rotatability.

1. Introduction

In usual response surface methodology (RSM), response distribution is assumed as normal with
uncorrelated errors and equal variance (Box and Hunter 1957; Box and Draper 2007). In lifetime
betterment experiments, usual RSM is adopted for searching the optimal level combinations to
reach the specific target (Nair et al. 1992; Myers et al. 2002; Das and Lee 2009). A lifetime random
variable commonly follows gamma, or lognormal, or exponential, or Weibull distributions (Lawless,
1982; Das 2013), and oftenly the lifetime observations may be correlated (Myers et al. 2002). So,
the usual RSM is not appropriate for lifetime betterment experiments, as it does not meet the
necessary lifetime conditions. First and second-order response surface designs with correlated errors
under normal distribution have been introduced by Panda and Das (1994) and Das (1997),
respectively. First-order response surface designs under correlated errors with the above four lifetime
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distributions have been searched by Das and Huda (2011), Das and Lin (2011), Das, Kim and Park
(2015), Das, Kim and Lee (2015).

Commonly, a first-order model is an enormous approximation to the unknown true surface in
a miniature experimental region of the explanatory variables y’s. These models are commonly
adopted when the experimenters are far away from the optimal operating process. A second-order
polynomial model is frequently used for a system with curvature. Considering the lifetime x’s is a
larger-the-better characteristic, the steepest ascent direction is the direction in which the estimated
lifetime (x’s) increases. The steepest ascent method helps us for searching sequentially along the
path of maximum increase in lifetime through sequentially choosing suitable response function. A
lifetime experimenter is searching a process for a new region in which the lifetime of the product is
improved.

Das, Kim and Lee (2015) have searched first-order lifetime designs under autocorrelated error
structure with the above four distributions, and the designs are not D-optimal, and simply they are
only robust rotatable but not so efficient designs. Das, Kim and Park (2015) have studied first-
order D-optimal lifetime designs for compound symmetry and inter-class structure, but no author
has studied lifetime betterment designs under a special form of compound symmetry structure,
which is introduced herein. The present report searches some efficient first-order lifetime designs
under autocorrelated error structure along with some new designs under a special form of compound
symmetry structure.

The current report considers four lifetime distributions namely, gamma, exponential, Weibull
and lognormal. Suppose the lifetime (T0) follows Weibull distribution with probability density
function (p.d.f.):
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Suppose  controllable experimental variables y = (y1, y2, ..., yk
)� which are adopted to illustrate

the heterogeneity in lifetime T0. Commonly, in Weibull regression models, it is adopted that just �,
but not �, depends on y, and � can be replaced by �(y) (Lawless, 1982). Hence, the p.d.f. of X0 =
lnT0, given y is as follow
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where � = 
1

�
 and �(y) = ln �(y). Form the above distribution of  X0� y, it can be written as

X0 = �(y) + �h, (1.1)
where h follows the standard extreme value distribution with p.d.f.: exp(h – eh); –� < h < �, and
E(h) = –v = 0.5772..., known as Euler’s constant, Var(h) = �2/6. Equation (1.1) is recognized as a
location-scale regression model with random component h. From (1.1) a class of models can be
developed for different options of �(y) = ln�(y).
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If � = 1, � = 1, the stated above Weibull distribution changes to exponential lifetime distribution,
and equation (1.1) changes to

X0 = �(y) + h. (1.2)

Suppose lifetime (T0) follows gamma distribution with p.d.f.: , the 
1
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exp ;

{ ( )} ( )

� � ��� �� � �� �

p

p

t t

p y y
t0 ��0, the p.d.f. of X0 = lnT0, given y, is presented by

f (x0�y) = 
1

�p exp[(x0 – �(y))p]exp[–exp(x0 – �(y))]; –� < x0 < �.

From the above distribution, it can be written as

X0 = �(y) + h1, (1.3)

where h1 follows log-gamma distribution with p.d.f.: 
1

�p exp(h1p – eh1 ); –� < h1 < �.

Suppose the lifetime (T0) follows lognormal distribution (i.e., lnT0(= X0) follows normal

distribution with mean ln�(y) and variance )  with p.d.f.: 
2
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��0, �1 � 0, then

X0 = �(y) + �1�, (1.4)
where � follows the standard normal distribution.

The importance of lifetime designs are clearly discussed using a motivating example in the
articles by Das, Kim and Park (2015); Das, Kim and Lee (2015). The report is organized as follows.
The subsequent section presents first-order correlated lifetime models along with first-order
rotatability conditions. Section 3 presents some efficient first-order rotatable designs under
autocorrelated error structure, section 4 presents robust first-order lifetime designs under a special
form of compound symmetry structure, and and followed by conclusion. The fundamental
contributions of the current article are given in Sections 3 and 4, which are completely new in the
lifetime betterment experiments literature.

2. First-order Correlated Lifetime Models and Rotatability Conditions

2.1. First-order correlated lifetime models

For a known, or a miniature experimental region, or if the experimenters are outlying from the
optimal process operating conditions, first-order models are often adopted. It is clear that the above
stated four equations ((1.1) to (1.4)) have two portions namely �(y) (systematic) and a random
portion (�h, or h, or h1, or �1�) (related with the lifetime distribution). Note that the random portion
distribution is fully different from the lifetime (T0) distribution, and it is not a usual ‘random effects’
that are often used in random effects models namely missing information, unknown future prediction,
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unobserved effect, censored data etc. (Lee et al. 2017). First-order correlated lifetime models with
gamma, or exponential, or lognormal, or Weibull distributions are derived as follows.

From (1.1) the lifetime T0  follows Weibull distribution with mean �(y) (= eg(y,�), say as t0 > 0)
implying �(y) = ln�(y) = g(y, �) which turns to X0 (= lnT0�y) = g(y, �) + �h, where h follows
standard extreme value distribution. Assuming the first-order response surface of g(y, �) the resultant
lifetime model with Weibull distribution is:

0 0
1

ln ,
k

i i
i

T y y h
�

� � � � � ��
where h follows the standard extreme value distribution, and its mean and variance are given in
(1.1). For estimating the unknown parameters �0, �1, ..., �k

 one needs to conduct an experiment to
generate data, based on which, estimation can be done. When one performs an experiment, it issues
numerous noise factors, some of them may be even unidentifiable, or undefinable. These all possible
noise factors effects on the random variable ‘lnT0’ revealed by the experimental situations is denoted
by ‘e’, which is recognized as an experimental error. So, the above model is written as
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where �
i
’s are unknown regression parameters and y

ui
’s (for the u-th run of i-th factor, 1 � u � N, 1

� i � k) are experimental settings (or levels) which are non-stochastic, h follows standard extreme
value distribution, and e

u
’s presents experimental errors initiated by the noise factors. There are

two random variable h and e in (2.1), where h is connected to the lifetime T0 distribution, while e is
associated with the random experiment representing all unaccounted variation sources for the
experimental noise factors. Note that (2.1) is a mixed linear model, while two random variables in
(2.1) are not used herein as usual random effects as in generalized linear mixed models, hierarchical
generalized linear models (HGLMs) or double HGLMs (Lee et al., 2017). Classical, or correlated
first-order response surface models do not include the random variable connected to the lifetime
distribution. It is assumed herein that h

u
’s are all uncorrelated and h

u
 and e

u
 are uncorrelated. Similarly

as usual RSM (Box and Hunter 1957), one can assume that e
u
 follows normal distribution. In

addition, it is assumed that e
u
’s are not independent but correlated, as it is often observed in practice

(Myers et al. 2002). Hence, e follows multivariate normal distribution with E(e) = 0, Dis(e) =
�0

2W0, and rank (W0) = N, where W0 is any unknown general error variance-covariance structure.
The equation (2.1) can be written as

0
1

;1 ,
k

u u i ui u
i

x z y u N
�

� � �� � � � � � � � ��  say,,

or, X = Y� + �, (2.2)
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assuming � to be known for the time being, � is Euler’s constant (known), �
u
 = �h

u
 + �� + e

u
 is the

composite error (Das, Kim and Lee 2015) and x
u
 = z

u
 + ��. Here X = (x1, x2, ..., xN

)�, is the origin
changed recorded natural logarithm lifetime observational vector, � = (�0, �1, ..., �k

)� is the vector
of regression coefficients of order (k + 1) × 1; Y = (1 : (y

ui
); 1 � u � N; 1 � i � k)  is the design matrix

and � = (�1, �2, ..., �N
)�. Note that E(�

u
) = 0, Var(�

u
) = (�2�2/6 + �0

2) = �1
2 say, Cov(�

u
, �

u�) = Cov(e
u
,

e
u�), E(�) = 0, Dis(�) = (�2�2/6)I

N
 + �0

2W0 = �1
2W1  and ‘W1’ is the composite correlated error structure

(Das, Kim and Lee 2015), where
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The model (2.2) under Weibull distribution assumes � is known, but practically, it is unknown,
which is substituted by its estimate �̂  that is calculated based on the original lifetime observations
T0 which follows Weibull distribution as in (1.1). For all computation, it is considered, x

u
 = z

u
 + �̂�,

u = 1, 2, ..., N.
For  � = 1 (concluding, � = 1) in (1.2), the correlated first-order lifetime model for exponential

distribution is exactly same as (2.2), with x
u
 = z

u
 + �, �

u
 = h

u
 + � + e

u
, E(�

u
) = 0, and Var(�

u
) = �2/6

+ �0
2 = �1

2 (say), u = 1, 2 ..., N; E(�) = 0, Dis(�) = (�2/6)I
N 

 + �0
2W0 = �1

2W1, where W1 is as in (2.2).
The correlated first-order lifetime model for gamma distribution as in (1.3) is exactly same as

(2.2), with x
u
 = z

u
 – �0, �u

 = h1u
 – �0 + e

u
, �0 = E(h1u

), E(�
u
) = 0, and Var(�

u
) = �1

2 + �1
2 �1

2 (say), u =
1, 2 ..., N, E(�) = 0, Dis(�) = �1

2I
N
 + �0

2W0 = �1
2W1, considering �0 to be known for the time being,

where �1
2 = Var(h1), h1  follows log-gamma distribution as in (1.3) and W1 is as in (2.2). Same

assumptions as h
u
 are satisfied by h1u

. For all derivations with gamma distributions, it is considered
that �0 is known, but practically �0 is unknown which is substituted by its estimate 0�̂  with the
original lifetime observations T0, which follows gamma distribution as in (1.3). We consider that x

u

= z
u
 – 0�̂ ; u = 1, 2, ..., N.
The correlated first-order lifetime model for lognormal distribution as in (1.4) is exactly same

as (2.2), with x
u
 = z

u
, �

u
 = �1�u

 + e
u
, E(�

u
) = 0 and Var(�

u
) = �1

2 + �2
0 = �1

2 (say), u = 1, 2 ..., N; E(�) =
0, Dis(�) = �1

2I
N
 + �0

2W0 = �1
2W1, where � follows the standard normal distribution and W1 is as in

(2.2). Similar assumptions as h
u
 are satisfied by �

u
.

For the above considered four lifetime distributions, the first-order correlated response surface
model is exactly same as in (2.2), but only the unknown composite error (�) and its variance-
covariance structure is different for different lifetime distributions. Also, Dis(�) = �0

2I
N
, if Cov(e

i
,

e
j
) = 0 for all i � j, i.e., W1 = I

N
. Practically, W1 is unknown, but it is assumed known for all
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theoretical derivations. Generally, W1 contains a number of unknown constants, and in the
calculations which follow, the expressions for W1 and W1

–1 are obtained by those after substituting
the unknown constants with suitable estimates, or some assumed values.

For the above situations, appropriate selection of the experimental levels y
ui

’s, i.e., Y = ((y
ui

), 1
� u � N, 1 � i � k), the design matrix is the most important part for obtaining maximum information
regarding the unknown regression parameters. Panda and Das (1994) initiated first-order RSM
with correlated errors along with response normal distribution.

2.2. First-order Correlated Lifetime Models Rotatability Conditions

For the model (2.2), the best linear unbiased estimator of �, for the known W1 and (Y�W1
–1Y) positive

definite, is �̂  = (Y�W1
–1Y)–1(Y�W1

–1X) with Dis(�̂) = (Y�W1
–1Y)–1.

Follwing Das, Kim and Lee (2015), the necessary and sufficient robust first-order correlated
lifetime models rotatability conditions (for all values of correlation coefficient (�), where ��� W1

and for all 1 � i, j � k) in the model (2.2) are
(i) v0j

 = 1�W–1y
j
 = 0,

(ii) v
ij
 = y�

i
W–1y

j
 = 0, i � j,

(iii) v
ii
 = y�

i
W–1y

i
 = constant = � (say) > 0. (2.3)

The estimated variance, that is Var ˆ( )yx  at y = (y1, y2, ..., yk
)� is known as variance function

which is given as follows,

2 2
1

100

1 1
ˆ( ) ( ),

k

y
i

Var x y f r
v �

� � �
�� (2.4)

where r2 = 2

1
,

k

ii
y

��  v00 = 1�W1
–11.

The present paper aims to derive robust efficient first-order rotatable designs for the above
considered four lifetime distributions with autocorrelated and a special form of compound symmetry
error structure. The developed first-order rotatable designs herein for the above four lifetime
distributions are free of these distributions and also free of the values of the correlation coefficient(s).
These designs depend on the error structures only. So, the derived designs are named as invariant
(free of these four distributions) and robust (free of the values of correlation coefficient(s)) first-
order rotatable designs. Rotatable and robust rotatable designs are defined as follows.

Definition 2.1 Rotatable design: A design is said to be rotatable if the estimated response
variance of the the correlated lifetime model (2.2) at a point (y) is a function of only the distance
from the design center (i.e. center of the co-ordinate axes) to that point.

Definition 2.2 Robust first-order rotatable design (RFORD): A design ‘d’ of k factors of
the correlated lifetime model (2.2) which remains first-order rotatable for all the dispersion matrices
belonging to a well-defined class  W0  = {W positive definite: W

N×N
 defined by a particular correlation

structure possessing a definite pattern} is called a RFORD, with reference to the variance-covariance
class W0.
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3. Some Efficient Correlated Lifetime Designs Under Autocorrelated Error Structure

Das, Kim and Lee (2015) have developed some first-order rotatable designs for the above considered
four lifetime distributions under autocorrelated error structure W0(�) = [�0

2{��i–j|}1�i�j
], which is

commonly observed in industrial  agricultural experiments, Econometrics, regression analysis

(Chatterjee and Price, 2000). For the autocorrelated error structure W0(�), the combined error
structure �0

2W1 as in (2.2) reduces to the following structure

2 1

2
2 2
1 1 1

1 2 3

1

1

1

�

�

� � �

� �� � �
� �

� � �� �� � � � �
� �� �� � �� �

�

�

� � � � �

�

N

N

N N N

q q q

q q q
W

q q q

where q = 
2
0
2
1

�
�

 and �1
2 = (�2�2/6 + �0

2) for Weibull distribution, �1
2 = (�2/6 + �0

2) for exponential

distribution, �1
2 = (�1

2 + �0
2) for gamma distribution and �1

2 = (�1
2 + �0

2) for lognormal distribution.
The above combined error structure �1

2W1 is complicated but it is approximately first-order
autocorrelation structure W0(�) as in above (Das, Kim and Lee, 2015). The inverse of �1

2W1 does
not exit in a general form with the parameters involved in it. To obtain an approximate inverse of it
in a suitable form, it is assumed by Das, Kim and Lee (2015) that q�r = �1

r, for r = 2, 3, ..., (N – 1)
where �1 = q�. Note that,  0 < q < 1 and –1 < � < 1, and the sign of q�r is the sign of �1

r. This
particular assumption is approximately true for smaller values of r. For r = 1, it is exactly true, but
for r > 1 , we consider a little lower value �1

r than q�r, in the population error dispersion structure
which is completely unknown.

According to the above assumption, the approximated combined error structure  turns to an
autocorrelated structure �1

2W1(�1) with autocorrelation coefficient �1, and the inverse of the
approximated �1

2W1 is given as follow

(�1
2W1)

–1 � (�1
2W1(�1))

–1 = {�1
2(1 – �1

2)}–1[(1 + �1
2)I

N
 – �1

2B0 – �1A0]
where I

N
 is the N × N identity matrix, B0 is the N × N matrix with elements b11 = b

NN
 = 1 and all other

elements 0 (zeros), and A0 is the N × N matrix with a
ij
 = 1 for �i – j| = 1 and all other elements 0

(zeros).
Simplified first-order rotatability conditions of (2.3) under the combined error structure

�1
2W1(�1(or �)) (for all the considered four lifetime distributions; for all 1 � i, j � k) are

(i) v0�j = 
1

1 2

0;
N N

uj uj
u u

y y
�

� �

� � �� �  1 � i, j � k,

(ii) v
i�j = 

1 1 1
2

( 1) ( 1)
1 2 1 1

N N N N

ui uj uj uj uj u j u i uj
u u u u

y y y y y y y y
� � �

� �
� � � �

� �� � � � �� �
� �

� � � �  = 0; 1 � i � j ��k,
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(iii) v
i�i = 

1 1
2 2 1 2 2 2

( 1)
1 2 1

{ (1 )} 2
N N N

ui ui ui u i
u u u

y y y y
� �

�
�

� � �

� �� � � � � � �� �
� �
� � �  = �; 1 ��i � k. (3.1)

A general method of RFORDs construction along with some other design examples are given
in Das, Kim and Lee (2015).

The variance of the estimated response at y of a D-optimum robust first-order rotatable design
(D-ORFOD) under the autocorrelated structure is

2 2
2

0 2

(1 )
ˆ( )

( 2) ( 2) 2 ( 1)

� ���� ��
�� �� �� � � � � � � � �� �

y

r
Var x

N N N N N  if � > 0, (3.2)

2 2
2

0 2

(1 )
ˆ( )

( 2) ( 2) 2 ( 1)

� ���� ��
�� �� �� � � � � � � � �� �

y

r
Var x

N N N N N  if � < 0 (3.3)

where r2 = 2

1

k

ii
y

�� .

In case of autocorrelated error structure, D-ORFORDs are very difficult to construct, and yet
they have been not developed best of our knowledge. So, some RFORDS have been developed by

Das, Kim and Lee (2015). For a RFORD d with estimated variance ˆ( )y dVar x , the efficiency ratio of
the RFORD d is denoted by ER and is given by

2

2

0
0

0

ˆmax{ ( ) }
% 100,

ˆmax{ ( ) }

y
r k

y d
r k

V x
ER

V x
� �

� �

� � (3.4)

where 0ˆ( )yV x  is the estimated variance a D-ORFOD under the autocorrelated structure as in (3.2)
and (3.3).

Herein some examples of efficient RFORDs under autocorrelated error structure for the above
four lifetime distributions are developed based on Hadamard matrices H4, H8 and H16, where H4 =

H2 � H2; H8 = H2 � H4; H16 = H2 � H8, H2 = 
1 1

1 1

� �
� ��� �

, ��denotes Kronecker product. The efficiency

of the developed designs herein are compared with the designs developed by Das, Kim and Lee
(2015). Higher order designs have not been considered herein as the design points will be large. Let
h

j
(i) be the jth column of a Hadamard matrix of order i = 4, 8, 16. We have developed six efficient

designs with k = 2, 3 and 4 factors for ��> 0 and ��< 0 with the same runs in comparison with the
designs developed by Das, Kim and Park (2015). The current developed designs are d1(k = 2, N =
11, � > 0), d2(k = 3, N = 15, � > 0), d3(k = 4, N = 19, � > 0), d4(k = 2, N = 11, � < 0), d5(k = 3, N =
15, � < 0), d6(k = 4, N = 19, � < 0), which are displayed in Table 1 and Table 2, respectively. Similar
six designs from Das, Kim and Lee (2015) are D1(k = 2, N = 11, � > 0), D2(k = 3, N = 15, � > 0),
D3(k = 4, N = 19, � > 0), D4(k = 2, N = 11, � < 0), D5(k = 3, N = 15, � < 0), D6(k = 4, N = 19, � < 0),
which are displayed in Table 3 and Table 4, respectively. Comparison of their efficiencies are
displayed in the Tables 5 to 10, and in the Figures 1, 2 and 3. From Tables 5 to 10, and Figures 1 to
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Table 1: Newly developed efficient designs (d
1
, d

2
, d

3
) for  0

Design No. of runs 2

1

N

uiu
x

�� 1 2

2

N

uiu
x

�

�� ( 1)1

N

ui u iu
x x ��� ER%

d
1
 :

x
1
 =  (0, h

2
(4)�, 0, h

2
(4)�, 0)� 11 8 8 –6

2

2

2

2

(1 ) 2(1 )

11 9 11 9 20

(1 ) 2(1 )
11 9 8 8 12

� ��� ��
�� �� � � � � �� �

� ��� ��
�� �� � � � � �� �x

2
 =  (0, h

2
(4)�, 0, –h

2
(4)�, 0)� (� 11) (� 9) (� –10)

d
2
 :

x
1
 =  (0, h

4
(4)�, 0, –h

6
(8)�, 0)� 15 12 12 –6

2

2

2

2

(1 ) 3(1 )
15 13 15 13 28

(1 ) 3(1 )
15 13 12 12 12

� ��� ��
�� �� � � � � �� �

� ��� ���� �� � � � � �� �
x

2
 =  (0, h

2
(4)�, 0, –h

8
(8)�, 0)� (� 15) (� 13) (� –14)

x
3
 =  (0, h

3
(4)�, 0, +h

2
(8)�, 0)�

d
3
 :

x
1
 =  (0, h

2
(8)�, 0, +h

8
(8)�, 0)� 19 16 16 –10

2

2

2

2

(1 ) 4(1 )

19 17 19 17 36

(1 ) 3(1 )
19 17 16 16 20

� ��� ��
�� �� � � � � �� �

� �� � ��
�� �� � � � � �� �

x
2
 =  (0, h

8
(8)�, 0, –h

2
(8)�, 0)� (� 19) (� 17) (� –18)

x
3
 =  (0, h

6
(8)�, 0, h

6
(8)�, 0)�

x
4
 =  (0, h

6
(8)�, 0, –h

6
(8)�, 0)�

3, it is observed that the newly developed designs herein with the same number of factors and runs
are more efficient than the designs developed by Das, Kim and Lee (2015).

4. First-order Correlated Lifetime Designs for A Special Compound Symmetry Correlation
Structure

In case of a compound symmetry correlation structure, there are ‘m’ groups each with ‘n’ observations,
and in each group there is an uniform correlation structure (Das, Kim and Park, 2015). This is an
extension of inter-class correlation structure which is clearly explained in the article by Das, Kim
and Park (2015). In the present context, we have considered a special type of compound symmetry
correlation structure with two groups such that in the first group there is only the first observation,
and the remaining group contains the rest (N – 1) observations. This situation is commonly observed
when the machine is started initially, the first observation may be recorded with little more disturbance
than the remaining others. As a result, the correlation between the first observation with the remaining
is little different than the correlation between any two observations of the rest, excluding the first
one. This is observed in practice in any production process, or in the measuring units with some
instruments, etc. The first group may contain one or more observations. In the very sensitive cases,
it may be only the first observation as the first group, and the rest others as the second group. This
particular correlation structure is will illustrated in the article by Das and Mukherjee (2021).
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Table 2: Newly developed efficient designs (d
4
, d

5
, d

6
) for  0

Design No. of runs 2

1

N

uiu
x

�� 1 2

2

N

uiu
x

�

�� ( 1)1

N

ui u iu
x x ��� ER%

d
4
 :

x
1
 =  (0, h

3
(4)�, 0, h

3
(4)�, 0)� 11 8 8 2

2

2

2

2

(1 ) 2(1 )

11 9 11 9 20

(1 ) 2(1 )
11 9 8 8 4

� �� � ��
�� �� � � � � �� �

� ��� ��
�� �� � � � � �� �x

2
 =  (0, h

3
(4)�, 0, –h

3
(4)�, 0)� (� 11) (� 9) (� +10)

d
5
 :

x
1
 =  (0, h

3
(4)�, 0, –h

3
(8)�, 0)� 15 12 12 2

2

2

2

2

(1 ) 3(1 )

15 13 15 13 28

(1 ) 3(1 )
15 13 12 12 4

� ��� ��
�� �� � � � � �� �

� �� � ��
�� �� � � � � �� �

x
2
 =  (0, h

2
(4)�, 0, h

5
(8)�, 0)� (� 15) (� 13) (� 14)

x
3
 =  (0, h

4
(4)�, 0, h

7
(8)�, 0)�

d
6
 :

x
1
 =  (0, h

3
(8)�, 0,+h

5
(8)�, 0)� 19 16 16 6

2

2

2

2

(1 ) 4(1 )

19 17 19 17 36

(1 ) 3(1 )
19 17 16 16 12

� �� � � �
�� �� � � � � �� �

� �� � ��
�� �� � � � � �� �

x
2
 =  (0, h

5
(8)�, 0, –h

3
(8)�, 0)� (� 19) (� 17) (� 18)

x
3
 =  (0, h

7
(8)�, 0, h

7
(8)�, 0)�

x
4
 =  (0, h

7
(8)�, 0, –h

7
(8)�, 0)�

Table 3: Das, Kim and Lee (2015) developed designs (D
1
, D

2
, D

3
) for 0

Design No. of runs 2

1

N

uiu
x

�� 1 2

2

N

uiu
x

�

�� ( 1)1

N

ui u iu
x x ��� ER%

D
1
 :

x
1
 =  (0, h

2
(4)�, 0, h

4
(4)�, 0)� 11 8 8 –4

2

2

2

2

(1 ) 2(1 )

11 9 11 9 20

(1 ) 2(1 )
11 9 8 8 8

� ��� ��
�� �� � � � � �� �

� �� � ��
�� �� � � � � �� �x

2
 =  (0, h

4
(4)�, 0, h

2
(4)�, 0)� (� 11) (� 9) (� –10)

D
2
 :

x
1
 =  (0, h

2
(4)�, 0, h

4
(8)�, 0)� 15 12 12 –4

2

2

2

2

(1 ) 3(1 )
15 13 15 13 28

(1 ) 3(1 )
15 13 12 12 8

� ��� ��
�� �� � � � � �� �

� �� � ���� �� � � � � �� �
x

2
 =  (0, h

3
(4)�, 0, h

6
(8)�, 0)� (� 15) (� 13) (� –14)

x
3
 =  (0, h

4
(4)�, 0, h

8
(8)�, 0)�

D
3
 :

x
1
 =  (0, h

2
(8)�, 0, h

4
(8)�, 0)� 19 16 16 –8

2

2

2

2

(1 ) 4(1 )

19 17 19 17 36

(1 ) 4(1 )
19 17 16 16 16

� �� � ��
�� �� � � � � �� �

� �� � ��
�� �� � � � � �� �

x
2
 =  (0, h

4
(8)�, 0, h

2
(8)�, 0)� (� 19) (� 17) (� –18)

x
3
 =  (0, h

6
(8)�, 0, h

8
(8)�, 0)�

x
4
 =  (0, h

8
(8)�, 0, h

6
(8)�, 0)�
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Table 4: Das, Kim and Lee (2015) developed designs (D
4
, D

5
, D

6
) for 0

Design No. of runs 2

1

N

uiu
x

�� 1 2

2

N

uiu
x

�

�� ( 1)1

N

ui u iu
x x ��� ER%

D
4
 :

x
1
 =  (0, h

3
(4)�, 0, h

4
(4)�, 0)� 11 8 8 0

2

2

2

2

(1 ) 2(1 )

11 9 11 9 20

(1 ) 2(1 )
11 9 8 8

� ��� ��
�� �� � � � � �� �

� �� � ��
�� �� � � �� �x

2
 =  (0, h

4
(4)�, 0, h

3
(4)�, 0)� (� 11) (� 9) (� 10)

D
5
 :

x
1
 =  (0, h

2
(4)�, 0, h

7
(8)�, 0)� 15 12 12 0

2

2

2

2

(1 ) 3(1 )

15 13 15 13 28

(1 ) 3(1 )
15 13 12 12

� ��� ��
�� �� � � � � �� �

� ��� ��
�� �� � � �� �

x
2
 =  (0, h

3
(4)�, 0, h

4
(8)�, 0)� (� 15) (� 13) (� 14)

x
3
 =  (0, h

4
(4)�, 0, h

3
(8)�, 0)�

D
6
 :

x
1
 =  (0, h

3
(8)�, 0, h

7
(8)�, 0)� 19 16 16 4

2

2

2

2

(1 ) 4(1 )
19 17 19 17 36

(1 ) 4(1 )
19 17 16 16 8

� ��� ��
�� �� � � � � �� �

� �� � ���� �� � � � � �� �

x
2
 =  (0, h

7
(8)�, 0, h

3
(8)�, 0)� (� 19) (� 17) (� 18)

x
3
 =  (0, h

4
(8)�, 0, h

5
(8)�, 0)�

x
4
 =  (0, h

5
(8)�, 0, h

4
(8)�, 0)�

Under the above special situations only with two groups, it is assumed that the N observational

errors e1, e2, ..., eN
 have the same variance �0

2, and 2
0

( , )i jCov e e

�  = �*; i ��  j = 2, 3, ..., N; also

1
2
0

( , )

�
iCov e e

= �1
*; i = 2, 3, ..., N. Therefore, Dis(e) = �0

2W0(�1
*, �*) say, and it is given by

* * *
1 1 1

* * *
2 * * 2 1
0 0 1 0

* * *
1

1

1
( , )

1

� �� � �
� �
� � �� �� � � � � � �

� �� �� � �� �

�

�

� � � � �

�

W

For the above special compound symmetry dispersion matrix �0
2W0(�1

*, �*), the combined error

structure �1
2W1 as in (2.2) reduces to �1

2W0(�1, �), where �1 = q�1
*, � = q�*, q = 

2
0
2
1

�
�

 and �1
2  = (�2�2/

6 + �0
2) for Weibull distribution, �1

2 = (�2/6 + �0
2) for exponential distribution, �1

2 = (�1
2 + �0

2) for
gamma distribution and �1

2 = (�1
2 + �0

2) for lognormal distribution. Therefore,



Jinseog Kim, Gaurab Bhattacharyya and Rabindra Nath Das

114 Journal of Econometrics and Statistics, 1(1) © 2021

2 1 2 1
1 0 1 1{ ( , )} ( ) ,� �

� �
� �
� �� � � � �
� �
� �� �
� �

�

�

� � � � �

�

a b b b

b c d d
W

b d d c

where, 2
1

[1 ( 2) ]

[1 ( 2) ( 1) )]

N
a

N N

� � �
�

� � �� � � , 
1

2
1

,
[1 ( 2) ( 1) )]

b
N N

��
�

� � �� � �
2
1

2
1

[1 ( 3) ( 2) )]
,

(1 )[1 ( 2) ( 1) )]

N N
c

N N

� � � � � �
�

� � � � � � � �   and 
2
1

2
1

( )
.

(1 )[1 ( 2) ( 1) )]
d

N N

� ��
�

� � � � � � � �

First-order Rotatability Conditions

Simplified first-order rotatability conditions of (2.3) under the combined error structure �0
2W0(�1,

�) (for all the considered four lifetime distributions; for all 1 � i, j � k) are

(i) {a + (N – 1)b} y1j
 + {(b + c) + (N – 2)d} 

2
0,

N

uju
y

�
��  for all j

(ii) ay1i 
y1j

 + (c – d) � � � �� � � �� �1 12 2 2 2 2

N N N N N

ui uj ui j uj i ui uju u u u u
y y b y y y y d y y

� � � � �
� � �� � � � �  =  0,

for all i � j

(iii)
2

2 2 2
1 1 1

2 2 2

[ ( ) 2�

� � �

� �� � � �
� � � � �� �� � � �

� � � �� �
� � �

N N N

i ui ui i ui
u u u

ay c d y b y y d y  = �,  for all i (4.1)

where the values of a, b, c and d are given above.

Table 5: ER% of the designs d
1
 and D

1
 when 0

� ER% of d
1

ER% of D
1

0.0 80.00000 80.00000

0.1 80.73013 78.39230

0.2 82.52096 78.84199

0.3 85.03797 80.80545

0.4 87.96580 83.81011

0.5 90.99164 87.38526

0.6 93.82460 91.05691

0.7 96.23336 94.39488

0.8 98.07823 97.08028

0.9 99.31954 98.95102
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Design Construction Method

From an usual (independent errors) first-order rotatable design (FORD) with k factors and N runs,
one can construct a RFORD under the special compound symmetry structure �1

2W0(�1, �) (for all
the considered four lifetime distributions, and for all values of �1, �), just adding one central point
at the beginning of each factor of the FORD. The resultant design will be a RFORD under this
special structure with k factors and (N + 1) runs. Note that the resultant design will satisfy (4.1)
always for all values of �1, � and for all the considered four lifetime distributions. Therefore, the
derived designs are robust (free of �1, � values) and invariant of the considered four lifetime

Table 6: ER% of the designs d
2
 and D

2
 when 0

� ER% of d
2

ER% of D
2

0.0 84.21053 84.21053
0.1 81.09613 79.29124

0.2 80.30303 77.37226
0.3 81.28186 77.76786
0.4 83.59965 79.97357

0.5  86.82171 83.50119
0.6 90.45562 87.77589
0.7 93.97301 92.12634

0.8 96.90249 95.88898
0.9 98.93951 98.57698

(a) (b)
Figure 1: The precision of the designs (a) (d

1
, D

1
) and (b) (d

4
, D

4
) with k = 2, N = 11 for –0.9   0.9

based on average r2 (Table 5 and Table 8)
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distribution. The variance function of a RFORD is similarly given by (2.4). An example of a RFORD
(d) with three factors (k = 3) and five runs (N = 5) for the special compound symmetry structure
�1

2W0(�1, �), following the above method is given as follow.

1

2

3

: 1 2 3 4 5

0 1 1 1 1

0 1 1 1 1

0 1 1 1 1

d

y

y

y

� �
� �

� �

Table 7: ER% of the designs d
3
 and D

3
 when 0

� ER% of d
3

ER% of D
3

0.0 86.95652 86.95652
0.1 84.32475 82.87951
0.2 83.57629 81.25819

0.3 84.28250 81.53672
0.4 86.12171 83.32108
0.5 88.77005 86.23377

0.6 91.83580 89.81285
0.7 94.86062 93.48770
0.8 97.40054 96.66538

0.9 99.14627 98.89540

(a) (b)
Figure 2: The precision of the designs (a) (d

2
, D

2
) and (b) (d

5
, D

5
) with k = 3, N = 15 for –0.9   0.9

based on average r2 (Table 6 and Table 9)
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Table 8: ER% of the designs d
4
 and D

4
 when 0

� ER% of d
4

ER% of D
4

0.0 80.00000 80.00000

–0.1 73.39873  70.75306

–0.2 68.67470 63.93443

–0.3 65.34914 58.99865

–0.4 63.06028 55.50239

–0.5 61.53846 53.09735

–0.6 60.58394 51.51515

–0.7 60.04895 50.55131

–0.8 59.82405 50.05086

–0.9 59.82793 49.89662

(a) (b)
Figure 3: The precision of the designs (a) (d

3
, D

3
) and (b) (d

6
, D

6
) with k = 4, N = 19 for –0.9   0.9

based on average r2 (Table 7 and Table 10)

5. Concluding Remarks

The article includes four fundamental lifetime distributions such as lognormal, exponential, gamma
and Weibull as the response lifetime distribution. Moreover, it considers that the experimental
errors are autocorrelated and a special compound symmetry structure. For handling lifetime response
heterogeneity, regressor controllable variables are considered. First-order location-scale lifetime
correlated models are taken in the article. Mixed linear logarithm of lifetime correlated first-order



Jinseog Kim, Gaurab Bhattacharyya and Rabindra Nath Das

118 Journal of Econometrics and Statistics, 1(1) © 2021

Table 9: ER% of the designs d
5
 and D

5
 when 0

� ER% of d
5

ER% of D
5

0.0 84.21053 84.21053

–0.1 75.52405 73.55485

–0.2 69.31106 65.82278

–0.3 64.91647 60.28344

–0.4 61.85731 56.37910

–0.5 59.78022 53.69128

–0.6 58.42697 51.90840

–0.7 57.60847 50.79906

–0.8 57.18570 50.19128

–0.9 57.05594 49.95687

Table 10: ER% of the designs d6 and D6 when 0

� ER% of d
6

ER% of D
6

0.0 86.95652 86.95652

–0.1 80.04426 78.48945

–0.2 75.22124 72.51908

–0.3 71.87756 68.33839

–0.4 69.59009 65.44755

–0.5 68.06283 63.49206

–0.6 67.08673 62.21889

–0.7 66.51263 61.44598

–0.8 66.23300 61.04129

–0.9 66.16962 60.90823

models are considered herein with two random variables, where one is connected with the lifetime
response distribution, and the other is related with the error component. First-order efficient rotatable
designs are derived herein with autocorrelated errors along with an approximated composite error
dispersion matrix. For a special compound symmetry error structure, a method of RFORDs is
developed herein. The designs derived herein do not depend on the response four lifetime
distributions as well as the values of correlation coefficients of the error structure. Therefore, these
designs are termed as invariant robust.

Real lifetime observations reveal that they are heteroscedatic along with lognormal, gamma,
Weibull, exponential distributions (Lawless, 1982; Das, Kim and Park, 2015; Das, 2013; Das and
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Lee, 2009). Myers  et al. (2002, p.128) illustrated that in  industrial production processes
experimental units are not independent at times  by design, which incorporates correlation among
observations via a  repeated measures scenario as in  split plot design. From practical view point,

the present paper has considered correlated first-order non-linear models, 0 0 1
ˆ ˆˆ exp( )

k

u i uii
t y

�
� � � ��

for some useful lifetimes distributions.
The developed designs herein can be used to interpret the optimal operating settings which

attains the target mean value, while reducing the variance. For this purpose, Myers and Carter
(1973) adopted dual response surface (DRS) approach, while Nelder and Lee (1991) applied joint
generalized linear models (JGLMs). Therefore, the current developed designs can be applied for
both the DRS and JGLMs approaches appropriately.
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